I B.Tech - I Semester - Regular / Supplementary Examinations FEBRUARY - 2023

PROBLEM SOLVING TECHNIQUES

(Common for CSE, IT)

Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

UNIT-II

3	a)	Develop an algorithm that will find the GCD of n positive non-zero integers.	L 3	CO 2	7 M
	b)	Outline an algorithm to check weather a given number is prime or not.	L 2	CO 2	7 M
OR					
4	a)	Construct an algorithm to compute all the prime factors of an integer n.	L 3	CO 2	7 M
	b)	Apply the linear congruential method to generate random numbers for the given m=51.	L 3	CO 2	7 M

UNIT-III

5	a)	Construct an algorithm to rearrange the elements in an array so that they appear in reverse order.	L3	CO3	7 M
b)	Develop an algorithm to find the number of times the maximum number occurs in an array of n elements.	L3	CO3	7 M	

OR

6	a)	Develop an algorithm to delete from an ordered array, all elements that occur more than k times.	L3	CO 4	7 M
	b)	Illustrate an algorithm to find the $\mathrm{k}^{\text {th }}$ smallest element in a given array of elements.	L2	CO 4	7 M

UNIT-IV

7	a)	Illustrate an algorithm to sort the array of elements using insertion sort.	L 2	CO 3	7 M

	b)	Apply selection sort to arrange the given set of elements in an ascending order 20, 35, 18, 8, 14, 41, 3, 39	L3	CO4	7 M
OR					
8	a)	Compare linear search and binary search techniques with examples.	L4	CO3	7 M
	b)	Develop an algorithm for merging three arrays.	L3	CO3	7 M
9	a)	Illustrate an algorithm to search a pattern from a given text.	L2	CO3	7 M
	b)	Explain about the linear pattern search with an example.	L2	CO3	7 M
OR					
10	a)	Illustrate an algorithm to count the frequency of a pattern in a given text.	L2	CO3	7 M
	b)	Explain about text line editing algorithm with an example.	L3	CO3	7 M

